Till innehåll på sidan
Till KTH:s startsida Till KTH:s startsida

Publikationer

Här visas de 50 senaste publikationerna från institutionen för Materialvetenskap.

[1]
Q. Tan et al., "Unravelling the roles of TiN-nanoparticle inoculant in additively manufactured 316 stainless steel," Journal of Materials Science & Technology, vol. 175, s. 153-169, 2024.
[2]
F. Niessen et al., "Efficient ab initio stacking fault energy mapping for dilute interstitial alloys," Computational materials science, vol. 231, 2024.
[4]
R. Sandström, "Stress Strain Curves," i Springer Series in Materials Science, : Springer Science and Business Media Deutschland GmbH, 2024, s. 39-58.
[5]
R. Sandström, "Tertiary Creep," i Springer Series in Materials Science, : Springer Nature, 2024, s. 233-256.
[6]
R. Sandström, "The Role of Cavitation in Creep-Fatigue Interaction," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 205-231.
[7]
R. Sandström, "Solid Solution Hardening," i Springer Series in Materials Science, : Springer Nature, 2024, s. 115-129.
[8]
R. Sandström, "The Role of Fundamental Modeling," i Springer Series in Materials Science, : Springer Nature, 2024, s. 1-12.
[9]
R. Sandström, "Preface," i Springer Series in Materials Science, : Springer Science and Business Media Deutschland GmbH, 2024.
[10]
R. Sandström, "Creep with Low Stress Exponents," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 83-114.
[11]
R. Sandström, "Cavitation," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 185-203.
[12]
R. Sandström, "Extrapolation," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 275-310.
[13]
R. Sandström, "Cells and Subgrains : The Role of Cold Work," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 145-167.
[14]
R. Sandström, "Stationary Creep," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 13-38.
[15]
R. Sandström, "Grain Boundary Sliding," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 169-184.
[16]
R. Sandström, "Creep Ductility," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 257-273.
[17]
R. Sandström, "Precipitation Hardening," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 131-144.
[18]
R. Sandström, "Primary Creep," i Basic Modeling and Theory of Creep of Metallic Materials, : Springer Nature, 2024, s. 59-81.
[21]
T. Loaiza, "Microstructural Decay in High-Strength Bearing Steels under Rolling Contact Fatigue," Doktorsavhandling : KTH Royal Institute of Technology, TRITA-ITM-AVL, 2024:3, 2024.
[22]
R. Sandström, "Basic Modelling of General Strength and Creep Properties of Alloys," Crystals, vol. 14, no. 1, 2024.
[23]
L. Hultman et al., "Advanced materials provide solutions towards a sustainable world," Nature Materials, vol. 23, no. 2, s. 160-161, 2024.
[24]
E. Smirnova, M. Nourazar och P. . A. Korzhavyi, "Internal structure of metal vacancies in cubic carbides," Physical Review B, vol. 109, no. 6, 2024.
[25]
J. Zhang et al., "Ultrauniform, strong, and ductile 3D-printed titanium alloy through bifunctional alloy design," Science, vol. 383, no. 6683, s. 639-645, 2024.
[26]
[27]
A. Vickerfält, "A study of an autogenous slag for steel production with consideration of possible vanadium extraction," Doktorsavhandling Stockholm : KTH Royal Institute of Technology, TRITA-ITM-AVL, 2024:1, 2024.
[29]
[30]
A. V. Prudencio et al., "Digital Design of a Lightweight and Low-Cost UHS Steel," i TMS 2024 153rd Annual Meeting and Exhibition Supplemental Proceedings, 2024, s. 1389-1399.
[32]
R. J. Compañero, "Recirculation of scrapped resources : The role of material information in enhancing the sustainability of recycling," Doktorsavhandling Stockholm : KTH Royal Institute of Technology, TRITA-ITM-AVL, 2024:4, 2024.
[33]
T. Fischer et al., "Micromechanical prediction of the elastic and plastic properties of sintered steels," Materials Science & Engineering : A, vol. 897, 2024.
[34]
T. Loaiza et al., "Micromechanical response of dual-hardening martensitic bearing steel before and after rolling contact fatigue," Journal of Materials Research and Technology, vol. 29, s. 4728-4734, 2024.
[41]
T. Loaiza et al., "A Study on the Damage Behavior of Hybrid 60 and 52100 Steel during Rolling Contact Fatigue," i Proceedings 1st ASTM Bearing and Transmission Steels Technology Symposium, 2024, s. 525-540.
[45]
X. Zhang et al., "Delafossite NaYTe2 as a transparent conductive material with bipolar conductivity: A first-principles prediction," Journal of Physics and Chemistry of Solids, vol. 190, 2024.
[47]
E. Dastanpour Hosseinabadi et al., "An assessment of the Al50Cr21-xMn17+xCo12 (x=0, 4, 8) high-entropy alloys for magnetocaloric refrigeration application," Journal of Alloys and Compounds, vol. 984, s. 173977, 2024.
[48]
[49]
Y.-C. Lu et al., "Comparison of Hydrochar and Anthracite as Reducing Agents for Direct Reduction of Hematite," ISIJ International, vol. 64, no. 6, s. 978-987, 2024.
[50]
O. Hessling, "Some aspects of hydrogen reduction of iron ore," Doktorsavhandling : KTH Royal Institute of Technology, TRITA-ITM-AVL, 2024:5, 2024.
Fullständig lista i KTH:s publikationsportal