Skip to main content
To KTH's start page

Direct reduction of alloy metals

DRAM

Sweden has a large industry producing metals, especially stainless steel. These processes typically emit large volumes of greenhouse gases and consume vast amounts of energy. This project aims to build on previous work to see if alloys of a target composition can be produced directly from mixtures of oxide powders using hydrogen. By doing this, a large proportion of greenhouse gas emissions form the metals industry can be eliminated, up to millions of tons per year. Sweden could then compete internationally while meeting its target for a carbon neutral society by 2045 and do so sustainably.

Funding agency

Energimyndigheten

Start and end date

March 2020 - October 2022

Contact person

Christopher Hulme
Christopher Hulme associate professor chrihs@kth.se +4687908459 Profile
Swedish energy agency's logo
This project is funded by the Swedish Energy Agency (Energimyndigheten)
Page responsible:webmaster@mse.kth.se
Belongs to: Materials Science and Engineering
Last changed: Nov 26, 2024
Optimization of the ingot casting process by minimising macrosegregation and porosity
Avoiding cracking during casting of a duplex stainless steel
Highly efficient technologies for increased yields in steelmaking processes and reduced environmental impact
Valorization of wet biomass residues for sustainable steel production with efficient nutrient recycling
Synthesis, structure and application of bio-binders for electrodes and refractories in the metallurgical process industries
Substitution of fossil-based carbon with lignin in furnace electrodes for the metallurgical industry
Metallic Elements Dissipation Avoided by Life cycle design for Steel
Application of Microwave Plasma Generator for the Production of Solar Grade Silicon
Substitution of fossil Combination in Industrial high-Temperature processes by Advanced Electrical and plasma heating technologies
P purification of MeOH sludge to produce synthetic fluorspar and to recover phosphorus
Refractory materials in steel production: mechanisms of lining wear
Validation of Simulation Models for Steel Production
Fossil free Graphite production with Molten iron graphitization of biomass
Upgrading of biobased pyrolysis oil in existing refinery infrastructure
Biomaterials for carbon anode in aluminium production
Innovative Integrated Tools and Technologies to Protect and Treat Drinking Water from Disinfection Byproducts (DBPs)
Catalytic reduction of CO2 gas to solid carbon - towards emission-free steelmaking
Clean metallurgy
FerroSilva - fossil-free virgin steel from iron ore and biogenic reduction gas
Computational fluid dynamics
Energy and furnace technology
Recycling plastic wastes to valuable chemicals of monoaromatics and metals through catalytic-pyrolysis
Optimized biofuel-production via two-step upgrading via catalytic pyrolysis and hydrotreatment
Electrified-Catalytic Reforming using 3D printed catalysts for Biomethane production from biomass pyrolysis
High-temperature experimental kinetics
Powder metallurgy
Advanced design, monitoring , development and validation of novel HIgh PERformance MATerials and components